Solved

Examine the Function z=exsin2y for relative extrema and saddle points. z = e ^ { - x } \sin 2 y \text { for relative extrema and saddle points. }

Question 117

Multiple Choice

Examine the function z=exsin2y for relative extrema and saddle points. z = e ^ { - x } \sin 2 y \text { for relative extrema and saddle points. }  Examine the function  z = e ^ { - x } \sin 2 y \text { for relative extrema and saddle points. }    A)  saddle point:  ( 0,0,0 )   B)  relative minimum:  ( 0,0,1 )   C)  relative maximum:  ( 0,0,0 )   D)  relative minimum:  ( 0,0,0 )   E)  no critical points


A) saddle point: (0,0,0) ( 0,0,0 )
B) relative minimum: (0,0,1) ( 0,0,1 )
C) relative maximum: (0,0,0) ( 0,0,0 )
D) relative minimum: (0,0,0) ( 0,0,0 )
E) no critical points

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions