Solved

Set Up a Double Integral That Gives the Area of the Surface

Question 24

Multiple Choice

Set up a double integral that gives the area of the surface on the graph of f(x,y) =10cos(x2+y2) f ( x , y ) = 10 \cos \left( x ^ { 2 } + y ^ { 2 } \right) over the region R={(x,y) :x2+y2π4}R = \left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } \leq \frac { \pi } { 4 } \right\}


A)
S=π/4π/4(π/4) x2(π/4) x21+400(x2+y2) sin2(x2+y2) dydxS = \int _ { - \sqrt { \pi / 4 } } ^ { \sqrt { \pi / 4 } } \sqrt { ( \pi / 4 ) - x ^ { 2 } } \sqrt { ( \pi / 4 ) - x ^ { 2 } } \sqrt { 1 + 400 \left( x ^ { 2 } + y ^ { 2 } \right) \sin ^ { 2 } \left( x ^ { 2 } + y ^ { 2 } \right) } d y d x
B)
S=π/4π/4(π/4) x2(π/4) x21+400(x2+y2) cos2(x2+y2) dydxS = \int _ { - \sqrt { \pi / 4 } } ^ { \sqrt { \pi / 4 } } \int _ { - \sqrt { ( \pi / 4 ) - x ^ { 2 } } } ^ { \sqrt { ( \pi / 4 ) - x ^ { 2 } } } \sqrt { 1 + 400 \left( x ^ { 2 } + y ^ { 2 } \right) \cos ^ { 2 } \left( x ^ { 2 } + y ^ { 2 } \right) } d y d x

C) S=(π/4) y2(π/4) x22(π/4) x23+400(x2+y2) cos2(x2+y2) dydx\begin{aligned} S = & \int _ { - \sqrt { ( \pi / 4 ) - y ^ { 2 } } } ^ { \sqrt { ( \pi / 4 ) - x ^ { 2 } } } \int ^ { 2 } - \sqrt { ( \pi / 4 ) - x ^ { 2 } } \sqrt { 3 + 400 \left( x ^ { 2 } + y ^ { 2 } \right) \cos ^ { 2 } \left( x ^ { 2 } + y ^ { 2 } \right) } d y d x \end{aligned}
D)
S=(π/4) y2(π/4) x2(π/4) y2(π/4) x2\begin{aligned} S = & \int _ { - \sqrt { ( \pi / 4 ) - y ^ { 2 } } - \sqrt { ( \pi / 4 ) - x ^ { 2 } } } ^ { \sqrt { ( \pi / 4 ) - y ^ { 2 } } } \sqrt { ( \pi / 4 ) - x ^ { 2 } } \end{aligned}

E)
S=(π/4) y2(π/4) x2(π/4) y2(π/4) x21+400(x2+y2) cos2(x2+y2) dydxS = \int _ { - \sqrt { ( \pi / 4 ) - y ^ { 2 } } - \sqrt { ( \pi / 4 ) - x ^ { 2 } } } ^ { \sqrt { ( \pi / 4 ) - y ^ { 2 } } \sqrt { ( \pi / 4 ) - x ^ { 2 } } } \sqrt { 1 + 400 \left( x ^ { 2 } + y ^ { 2 } \right) \cos ^ { 2 } \left( x ^ { 2 } + y ^ { 2 } \right) } d y d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions