Solved

Find a Vector-Valued Function Whose Graph Is the Plane x+y+z=4x + y + z = 4 \text {. }

Question 55

Multiple Choice

Find a vector-valued function whose graph is the plane x+y+z=4x + y + z = 4 \text {. }


A) r(u,v) =uivj(4uv) k\mathbf { r } ( u , v ) = u \mathbf { i } - v \mathbf { j } - ( 4 - u - v ) \mathbf { k }
B) r(u,v) =ui+vj+(4uv) k\mathbf { r } ( u , v ) = u \mathbf { i } + v \mathbf { j } + ( 4 - u - v ) \mathbf { k }
C) r(u,v) =ui+vj+(4+u+v) k\mathbf { r } ( u , v ) = u \mathbf { i } + v \mathbf { j } + ( 4 + u + v ) \mathbf { k }
D) r(u,v) =ui+vj(4+u+v) k\mathbf { r } ( u , v ) = u \mathbf { i } + v \mathbf { j } - ( 4 + u + v ) \mathbf { k }
E) r(u,v) =uivj+(4uv) k\mathbf { r } ( u , v ) = - u \mathbf { i } - v \mathbf { j } + ( 4 - u - v ) \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions