Solved

Find an Equation of the Tangent Plane to the Surface

Question 66

Multiple Choice

Find an equation of the tangent plane to the surface represented by the vector-valued function at the given point. r(u,v) =(2u+v) i^+(uv) j^+vk^,(4,4,4) \overrightarrow { \mathbf { r } } ( u , v ) = ( 2 u + v ) \hat { \mathbf { i } } + ( u - v ) \hat { \mathbf { j } } + v \hat { \mathbf { k } } , ( 4 , - 4,4 )


A) (x4) 2(y+4) 3(z4) =0( x - 4 ) - 2 ( y + 4 ) - 3 ( z - 4 ) = 0
B) 2(x4) +2(y+4) 3(z4) =02 ( x - 4 ) + 2 ( y + 4 ) - 3 ( z - 4 ) = 0
C) z=0z = 0
D) (x4) 2(y+4) 3(z4) =0( x - 4 ) - 2 ( y + 4 ) - 3 ( z - 4 ) = 0 .
E) 2(x4) 2(y+4) +1(z4) =02 ( x - 4 ) - 2 ( y + 4 ) + 1 ( z - 4 ) = 0 .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions