Solved

Solve the Formula x2d2+y2n2=1;y\frac { x ^ { 2 } } { d ^ { 2 } } + \frac { y ^ { 2 } } { n ^ { 2 } } = 1 ; y

Question 83

Multiple Choice

Solve the formula x2d2+y2n2=1;y\frac { x ^ { 2 } } { d ^ { 2 } } + \frac { y ^ { 2 } } { n ^ { 2 } } = 1 ; y
for the indicated variable.


A) y=n(2xd) (1+xd) ,y=n(2xd) (1+xd) \quad y = \sqrt { n ( 2 - x d ) ( 1 + x d ) } , y = - \sqrt { n ( 2 - x d ) ( 1 + x d ) }
B) y=n(1xd) (1+xd) ,y=n(1xdd) (1+xd) \quad y = \sqrt { n ( 1 - x d ) ( 1 + x d ) } , y = - \sqrt { n \left( 1 - x d ^ { d } \right) ( 1 + x d ) }
C) y=n(1xd) (1+xd) ,y=n(1xd) (1+xd) y = n \sqrt { \left( 1 - \frac { x } { d } \right) \left( 1 + \frac { x } { d } \right) } , y = - n \sqrt { \left( 1 - \frac { x } { d } \right) \left( 1 + \frac { x } { d } \right) }
D) y=n(1xd) 2,y=n(1xd) 2y=\sqrt{n\left(1-\frac{x}{d}\right) ^{2}}, y=-\sqrt{n\left(1-\frac{x}{d}\right) ^{2}} e.

E) y=n(axd) (a+xd) ,y=n(axd) (a+xd) y=n \sqrt{\left(\mathrm{a}-\frac{x}{d}\right) \left(\mathrm{a}+\frac{x}{d}\right) }, y=-n \sqrt{\left(\mathrm{a}-\frac{x}{d}\right) \left(\mathrm{a}+\frac{x}{d}\right) }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions