Solved

Solve the Formula x2a2+y2f2=1;y\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { f ^ { 2 } } = 1 ; y

Question 52

Multiple Choice

Solve the formula x2a2+y2f2=1;y\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { f ^ { 2 } } = 1 ; y
for the indicated variable.


A) y=f(2xa) (1+xa) ,y=f(2xa) (1+xa) y=\sqrt{f(2-x a) (1+x a) }, y=-\sqrt{f(2-x a) (1+x a) }
B) y=f(1xa) (1+xa) ,y=f(1xa) (1+xa) y=f \sqrt{\left(1-\frac{x}{a}\right) \left(1+\frac{x}{a}\right) }, y=-f \sqrt{\left(1-\frac{x}{a}\right) \left(1+\frac{x}{a}\right) }
C) y=f(axa) (a+xa) ,y=f(axa) (a+xa) y=f \sqrt{\left(a-\frac{x}{a}\right) \left(a+\frac{x}{a}\right) }, y=-f \sqrt{\left(a-\frac{x}{a}\right) \left(a+\frac{x}{a}\right) }

D) y=f(1xa) 2,y=f(1xa) 2y=\sqrt{f\left(1-\frac{x}{a}\right) ^{2}}, y=-\sqrt{f\left(1-\frac{x}{a}\right) ^{2}}

E) Y=f(1xa) (1+xa) ,Y=f(1xa) (1+xa) Y=f(1-x a) (1+x a) , Y=-\sqrt{f(1-x a) (1+x a) }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions