Solved

The Function f(x)=x26f ( x ) = \sqrt { x ^ { 2 } - 6 }

Question 43

Multiple Choice

The function f(x) =x26f ( x ) = \sqrt { x ^ { 2 } - 6 } is one-to-one on the domain x6x \leq - \sqrt { 6 } . Find f1(x) f ^ { - 1 } ( x ) .


A) f1(x) =x26f ^ { - 1 } ( x ) = - \sqrt { x ^ { 2 } - 6 }
B) f1(x) =x2+6\quad f ^ { - 1 } ( x ) = - \sqrt { x ^ { 2 } + 6 }
C) f1(x) =x2+6f ^ { - 1 } ( x ) = x ^ { 2 } + 6
D) f1(x) =1x26f ^ { - 1 } ( x ) = \frac { 1 } { \sqrt { x ^ { 2 } - 6 } }
E)
f1(x) =x2+6f ^ { - 1 } ( x ) = \sqrt { x ^ { 2 } + 6 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions