Solved

The Function f(x)=x25f ( x ) = \sqrt { x ^ { 2 } - 5 }

Question 17

Multiple Choice

The function f(x) =x25f ( x ) = \sqrt { x ^ { 2 } - 5 } is one-to-one on the domain x5x \leq - \sqrt { 5 } . Find f1(x) f ^ { - 1 } ( x ) .


A) f1(x) =x2+5\quad f ^ { - 1 } ( x ) = x ^ { 2 } + 5
B) f1(x) =x2+5f ^ { - 1 } ( x ) = \sqrt { x ^ { 2 } + 5 }
C) f1(x) =1x25f ^ { - 1 } ( x ) = \frac { 1 } { \sqrt { x ^ { 2 } - 5 } }
D) f1(x) =x2+5\quad f ^ { - 1 } ( x ) = - \sqrt { x ^ { 2 } + 5 }
E) f1(x) =x25f ^ { - 1 } ( x ) = - \sqrt { x ^ { 2 } - 5 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions