Solved

The Function f(x)=x29f ( x ) = \sqrt { x ^ { 2 } - 9 }

Question 49

Multiple Choice

The function f(x) =x29f ( x ) = \sqrt { x ^ { 2 } - 9 } is one-to-one on the domain x9x \leq - \sqrt { 9 } . Find f1(x) f ^ { - 1 } ( x ) .


A) f1(x) =x2+9\quad f ^ { - 1 } ( x ) = x ^ { 2 } + 9
B) f1(x) =x2+9f ^ { - 1 } ( x ) = - \sqrt { x ^ { 2 } + 9 }
C) f1(x) =1x29f ^ { - 1 } ( x ) = \frac { 1 } { \sqrt { x ^ { 2 } - 9 } }
D) f1(x) =x2+9\quad f ^ { - 1 } ( x ) = \sqrt { x ^ { 2 } + 9 }
E) f1(x) =x29\quad f ^ { - 1 } ( x ) = - \sqrt { x ^ { 2 } - 9 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions