Solved

Find the Volume of the Described Solid xx -Axis At x=π/6x = \pi / 6

Question 44

Multiple Choice

Find the volume of the described solid.
-The solid lies between planes perpendicular to the xx -axis at x=π/6x = \pi / 6 to x=π/2x = \pi / 2 . The cross sections perpendicular to the x\mathrm { x } -axis are circular disks with diameters running from the curve y=cotx\mathrm { y } = \cot \mathrm { x } to the curve y=cscx\mathrm { y } = \csc \mathrm { x } .


A) (232) ππ23( 2 \sqrt { 3 } - 2 ) \pi - \frac { \pi ^ { 2 } } { 3 }
B) (31) π+π26( \sqrt { 3 } - 1 ) \pi + \frac { \pi ^ { 2 } } { 6 }
C) (3+1) π2π26\frac { ( \sqrt { 3 } + 1 ) \pi } { 2 } - \frac { \pi ^ { 2 } } { 6 }
D) (31) π2π212\frac { ( \sqrt { 3 } - 1 ) \pi } { 2 } - \frac { \pi ^ { 2 } } { 12 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions