Solved

Find the Absolute Extreme Values of the Function on the Interval

Question 92

Multiple Choice

Find the absolute extreme values of the function on the interval.
- f(θ) =sin(θ+π2) ,0θ5π4f ( \theta ) = \sin \left( \theta + \frac { \pi } { 2 } \right) , 0 \leq \theta \leq \frac { 5 \pi } { 4 }


A) absolute maximum is 1 at θ=0\theta = 0 ; absolute minimum is 1- 1 at θ=π\theta = \pi
B) absolute maximum is 1 at θ=12π\theta = \frac { 1 } { 2 } \pi ; absolute minimum is 1- 1 at θ=12π\theta = \frac { 1 } { 2 } \pi ,
C) absolute maximum is 1 at θ=32π\theta = \frac { 3 } { 2 } \pi ; absolute minimum is 1- 1 at θ=12π\theta = \frac { 1 } { 2 } \pi ,
D) absolute maximum is 1 at θ=12π\theta = \frac { 1 } { 2 } \pi ; absolute minimum is 1- 1 at θ=12π\theta = \frac { 1 } { 2 } \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions