Solved

Find the Derivative at Each Critical Point and Determine the Local

Question 17

Multiple Choice

Find the derivative at each critical point and determine the local extreme values.
- y={x25x+10,x1x2+15x10,x>1y = \left\{ \begin{array} { l l } - x ^ { 2 } - 5 x + 10 , & x \leq 1 \\- x ^ { 2 } + 15 x - 10 , & x > 1\end{array} \right.


A)
 Critical Pt.  derivative  Extremum  Value x=520 local max 654x=1 undefined  local min 6x=1520 local max 1854\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-\frac{5}{2} & 0 & \text { local max } & \frac{65}{4} \\x=1 & \text { undefined } & \text { local min } & 6 \\x=-\frac{15}{2} & 0 & \text { local max } & \frac{185}{4}\end{array}

B)
 Critical Pt.  derivative  Extremum  Value x=520 local min 654x=1 undefined  local max 4x=1520 local min 1854\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-\frac{5}{2} & 0 & \text { local min } & \frac{65}{4} \\x=1 & \text { undefined } & \text { local max } & 4 \\x=\frac{15}{2} & 0 & \text { local min } & \frac{185}{4}\end{array}


C)
 Critical Pt.  derivative  Extremum  Value x=520 local max 654x=1 undefined  local min 6x=152 undefined  local max 1854\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=\frac{5}{2} & 0 & \text { local max } & \frac{65}{4} \\x=1 & \text { undefined } & \text { local min } & 6 \\x=\frac{15}{2} & \text { undefined } & \text { local max } & \frac{185}{4}\end{array}

D)
 Critical Pt.  derivative  Extremum  Value x=520 local max 654x=1 undefined  local min 4x=1520 local max 1854\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-\frac{5}{2} & 0 & \text { local max } & \frac{65}{4} \\x=1 & \text { undefined } & \text { local min } & 4 \\x=\frac{15}{2} & 0 & \text { local max } & \frac{185}{4}\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions