Solved

Find the Function with the Given Derivative Whose Graph Passes r(θ)=cscθcotθ3,P(3π4,0)\mathrm { r } ^ { \prime } ( \theta ) = \csc \theta \cot \theta - 3 , \mathrm { P } \left( \frac { 3 \pi } { 4 } , 0 \right)

Question 61

Multiple Choice

Find the function with the given derivative whose graph passes through the point P.
- r(θ) =cscθcotθ3,P(3π4,0) \mathrm { r } ^ { \prime } ( \theta ) = \csc \theta \cot \theta - 3 , \mathrm { P } \left( \frac { 3 \pi } { 4 } , 0 \right)


A) r(θ) =cscθ3θ+9π4+2r ( \theta ) = \csc \theta - 3 \theta + \frac { 9 \pi } { 4 } + \sqrt { 2 }
B) r(θ) =cscθ3θ+9π4+2r ( \theta ) = - \csc \theta - 3 \theta + \frac { 9 \pi } { 4 } + \sqrt { 2 }
C) r(θ) =cscθ3θr ( \theta ) = - \csc \theta - 3 \theta
D) r(θ) =cscθt93r ( \theta ) = - \csc \theta - \frac { t ^ { 9 } } { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions