Solved

Compare the Right-Hand and Left-Hand Derivatives to Determine Whether or Not

Question 128

Multiple Choice

Compare the right-hand and left-hand derivatives to determine whether or not the function is differentiable at the point whose coordinates are given.
- Compare the right-hand and left-hand derivatives to determine whether or not the function is differentiable at the point whose coordinates are given. -   y = x \quad y = 2 x   A)  Since  \lim _ { x \rightarrow0 ^ { + } } f ^ { \prime } ( x )  = - 2  while  \lim _ { x \rightarrow 0 ^ { - } } f ^ { \prime } ( x )  = - 1 , f ( x )   is not differentiable at  x = 0 . B)  Since  \lim _ { x \rightarrow0 ^ { + } } f ^ { \prime } ( x )  = 2  while  \lim _ { x \rightarrow - ^ { - } } f ^ { \prime } ( x )  = 1 , f ( x )   is not differentiable at  x = 0 . C)  Since  \lim _ { x \rightarrow 0^ { + } } f ^ { \prime } ( x )  = 1  while  \lim _ { x - \theta ^ { - } } f ^ { \prime } ( x )  = 2 , f ( x )   is not differentiable at  x = 0 . D)  Since  \lim _ { x \rightarrow0^ { + } } f ^ { \prime } ( x )  = 1  while  \lim _ { x - \theta ^ { - } } f ^ { \prime } ( x )  = 1 , f ( x )   is differentiable at  x = 0 . y=xy=2xy = x \quad y = 2 x


A) Since limx0+f(x) =2\lim _ { x \rightarrow0 ^ { + } } f ^ { \prime } ( x ) = - 2 while limx0f(x) =1,f(x) \lim _ { x \rightarrow 0 ^ { - } } f ^ { \prime } ( x ) = - 1 , f ( x ) is not differentiable at x=0x = 0 .
B) Since limx0+f(x) =2\lim _ { x \rightarrow0 ^ { + } } f ^ { \prime } ( x ) = 2 while limxf(x) =1,f(x) \lim _ { x \rightarrow - ^ { - } } f ^ { \prime } ( x ) = 1 , f ( x ) is not differentiable at x=0x = 0 .
C) Since limx0+f(x) =1\lim _ { x \rightarrow 0^ { + } } f ^ { \prime } ( x ) = 1 while limxθf(x) =2,f(x) \lim _ { x - \theta ^ { - } } f ^ { \prime } ( x ) = 2 , f ( x ) is not differentiable at x=0x = 0 .
D) Since limx0+f(x) =1\lim _ { x \rightarrow0^ { + } } f ^ { \prime } ( x ) = 1 while limxθf(x) =1,f(x) \lim _ { x - \theta ^ { - } } f ^ { \prime } ( x ) = 1 , f ( x ) is differentiable at x=0x = 0 .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions