Solved

Find the Derivative of the Function s=t7+3t+6t2s = \frac { t ^ { 7 } + 3 t + 6 } { t ^ { 2 } }

Question 65

Multiple Choice

Find the derivative of the function.
- s=t7+3t+6t2s = \frac { t ^ { 7 } + 3 t + 6 } { t ^ { 2 } }


A) dsdt=t43t26t3\frac { \mathrm { ds } } { \mathrm { dt } } = \mathrm { t } ^ { 4 } - \frac { 3 } { \mathrm { t } ^ { 2 } } - \frac { 6 } { \mathrm { t } ^ { 3 } }
B) dsdt=12t9+8t2+12t\frac { \mathrm { ds } } { \mathrm { dt } } = 12 \mathrm { t } ^ { 9 } + 8 \mathrm { t } ^ { 2 } + 12 \mathrm { t }
C) dsdt=5t43t212t3\frac { d s } { d t } = 5 t ^ { 4 } - \frac { 3 } { t ^ { 2 } } - \frac { 12 } { t ^ { 3 } }
D) dsdt=5t4+3t2+12t3\frac { d s } { d t } = 5 t ^ { 4 } + \frac { 3 } { t ^ { 2 } } + \frac { 12 } { t ^ { 3 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions