Solved

Find the Limit LL For the Given Function ff , the Point x0x _ { 0 }

Question 19

Multiple Choice

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x) L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon .
- f(x) =3x2, L=243,x0=9, and ε=0.5\mathrm { f } ( \mathrm { x } ) = 3 \mathrm { x } ^ { 2 } , \mathrm {~L} = 243 , \mathrm { x } _ { 0 } = 9 \text {, and } \varepsilon = 0.5


A) 0.009260.00926
B) 9.009259.00925
C) 0.009250.00925
D) 8.990748.99074

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions