Solved

Find the Limit LL For the Given Function ff , the Point x0x _ { 0 }

Question 140

Multiple Choice

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x) L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon .
- f(x) =mx,m>0,L=4m,x0=4f ( x ) = m x , m > 0 , L = 4 m , x _ { 0 } = 4 , and ε=0.07\varepsilon = 0.07


A) δ=4m\delta = 4 - m
B) δ=0.07\delta = 0.07
C) δ=0.07m\delta = \frac { 0.07 } { m }
D) δ=4+0.07m\delta = 4 + \frac { 0.07 } { m }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions