Solved

Find the Limit LL For the Given Function ff , the Point x0x _ { 0 }

Question 54

Multiple Choice

Find the limit LL for the given function ff , the point x0x _ { 0 } , and the positive number ε\varepsilon . Then find a number δ>0\delta > 0 such that, for all xt0<xx0<δf(x) L<εx _ { t } 0 < \left| x - x _ { 0 } \right| < \delta \Rightarrow | f ( x ) - L | < \varepsilon .
- f(x) =243x,x0=4,ε=0.3\mathrm { f } ( \mathrm { x } ) = \sqrt { 24 - 3 \mathrm { x } } , \mathrm { x } _ { 0 } = - 4 , \varepsilon = 0.3


A) L=j5;δ=0.57\mathrm { L } = j - 5 ; \delta = 0.57
B) L=6;δ=1.17\mathrm { L } = 6 ; \delta = 1.17
C) L=7;δ=1.17L = 7 ; \delta = 1.17
D) L=6;δ=1.23L = 6 ; \delta = 1.23

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions