Solved

Prove the Limit Statement
-The Cross-Sectional Area of a Cylinder A=πD2/4\mathrm { A } = \pi \mathrm { D } ^ { 2 } / 4

Question 41

Multiple Choice

Prove the limit statement
-The cross-sectional area of a cylinder is given by A=πD2/4\mathrm { A } = \pi \mathrm { D } ^ { 2 } / 4 , where D\mathrm { D } is the cylinder diameter. Find the tolerance range of D\mathrm { D } such that A10<0.01| \mathrm { A } - 10 | < 0.01 as long as Dmin<D<Dmax\mathrm { D } _ { \min } < \mathrm { D } < \mathrm { D } _ { \max } .


A) Dmin=3.567,Dmax=3.578\mathrm { D } _ { \min } = 3.567 , \mathrm { D } _ { \max } = 3.578
B) Dmin=3.567,Dmax=3.570\mathrm { D } _ { \min } = 3.567 , \mathrm { D } _ { \max } = 3.570
C) Dmin=3.558,Dmax=3.570\mathrm { D } _ { \min } = 3.558 , \mathrm { D } _ { \max } = 3.570
D) Dmin=3.558,Dmax=3.578\mathrm { D } _ { \min } = 3.558 , \mathrm { D } _ { \max } = 3.578

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions