Solved

Prove the Limit Statement
-Select the Correct Statement for the Definition

Question 199

Multiple Choice

Prove the limit statement
-Select the correct statement for the definition of the limit: limx0f(x) =L\lim _ { x \rightarrow 0 } f ( x ) = L means that___________


A) if given any number ε>0\varepsilon > 0 , there exists a number δ>0\delta > 0 , such that for all xx , 0<xx0<ε0 < \left| x - x _ { 0 } \right| < \varepsilon implies f(x) L>δ| f ( x ) - L | > \delta .
B) if given any number ε>0\varepsilon > 0 , there exists a number δ>0\delta > 0 , such that for all xx , 0<xx0<ε0 < \left| x - x _ { 0 } \right| < \varepsilon implies f(x) L<δ| f ( x ) - L | < \delta .
C) if given a number ε>0\varepsilon > 0 , there exists a number δ>0\delta > 0 , such that for all xx , 0<xx0<δ0 < \left| x - x _ { 0 } \right| < \delta implies f(x) L>ε| f ( x ) - L | > \varepsilon .
D) if given any number ε>0\varepsilon > 0 , there exists a number δ>0\delta > 0 , such that for all xx , 0<xx0<δ0 < \left| x - x _ { 0 } \right| < \delta implies f(x) L<ε| f ( x ) - L | < \varepsilon .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions