Solved

Prove the Limit Statement
-Identify the Incorrect Statements About Limits ϵ\epsilon

Question 161

Multiple Choice

Prove the limit statement
-Identify the incorrect statements about limits.
I. The number L is the limit of f(x) as x approaches x0 if f(x) gets closer to L as x approaches x0.
II) The number L is the limit of f(x) as x approaches x0 if, for any ϵ\epsilon > 0, there corresponds a δ\delta > 0 such that f(x) L\mid f(x) - L \mid
< ϵ\epsilon whenever 0 < xx0\mid x - x_{0} \mid < δ\delta .
III) The number L is the limit of f(x) as x approaches x0 if, given any ϵ\epsilon > 0, there exists a value of x for which
f(x) L\mid f(x) - L\mid < ϵ\epsilon .


A) I and II
B) II and III
C) I and III
D) I, II, and III

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions