Solved

Provide an Appropriate Response ε>0\varepsilon > 0 , Find an Interval I=(5δ,5),δ>0I = ( 5 - \delta , 5 ) , \delta > 0

Question 192

Multiple Choice

Provide an appropriate response.
-Given ε>0\varepsilon > 0 , find an interval I=(5δ,5) ,δ>0I = ( 5 - \delta , 5 ) , \delta > 0 , such that if xx lies in II , then 5x<ε\sqrt { 5 - x } < \varepsilon . What limit is being verified and what is its value?


A) limx5x=5\lim _ { x \rightarrow 5 ^ { - } } \sqrt { x } = 5
B) limx5+5x=0\lim _ { x - 5 ^ { + } } \sqrt { 5 - x } = 0
C) limx05x=0\lim _ { x \rightarrow 0 ^ { - } } \sqrt { 5 - x } = 0
D) limx55x=0\lim _ { x \rightarrow 5 ^ { - } } \sqrt { 5 - x } = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions