Solved

Find a Formula for the Nth Partial Sum of the Series

Question 86

Multiple Choice

Find a formula for the nth partial sum of the series and use it to find the series' sum if the series converges.
- 91222+152232+213242++3(2n+1) n2(n+1) 2+\frac { 9 } { 1 ^ { 2 } \cdot 2 ^ { 2 } } + \frac { 15 } { 2 ^ { 2 } \cdot 3 ^ { 2 } } + \frac { 21 } { 3 ^ { 2 } \cdot 4 ^ { 2 } } + \ldots + \frac { 3 ( 2 n + 1 ) } { n ^ { 2 } ( n + 1 ) ^ { 2 } } + \ldots


A) 3n(n+2) (n+1) 2;3\frac { 3 n ( n + 2 ) } { ( n + 1 ) ^ { 2 } } ; 3

B) 3n(n+1) (n+2) 2;3\frac { 3 n ( n + 1 ) } { ( n + 2 ) ^ { 2 } } ; 3

C) 3n2(n+1) (n+2) ;3\frac { 3 n ^ { 2 } } { ( n + 1 ) ( n + 2 ) } ; 3

D) 3(n+1) (n+2) n2;3\frac { 3 ( n + 1 ) ( n + 2 ) } { n ^ { 2 } } ; 3

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions