Solved

Determine If the Series Converges or Diverges n=1(131/(n+1)131/n)\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { 3 ^ { 1 / ( n + 1 ) } } - \frac { 1 } { 3 ^ { 1 / n } } \right)

Question 41

Multiple Choice

Determine if the series converges or diverges. If the series converges, find its sum.
- n=1(131/(n+1) 131/n) \sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { 3 ^ { 1 / ( n + 1 ) } } - \frac { 1 } { 3 ^ { 1 / n } } \right)


A) converges; 1
B) converges; 13- \frac { 1 } { 3 }
C) converges; 23\frac { 2 } { 3 }
D) diverges

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions