Solved

Determine If the Series Converges or Diverges n=1(1ln(n+3)1ln(n+4))\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { \ln ( n + 3 ) } - \frac { 1 } { \ln ( n + 4 ) } \right)

Question 79

Multiple Choice

Determine if the series converges or diverges. If the series converges, find its sum.
- n=1(1ln(n+3) 1ln(n+4) ) \sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { \ln ( n + 3 ) } - \frac { 1 } { \ln ( n + 4 ) } \right)


A) converges; 1ln3\frac { 1 } { \ln 3 }
B) diverges
C) converges; ln4\ln 4
D) converges; 1ln4\frac { 1 } { \ln 4 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions