Solved

A) S(n)=4[36n+11(n+1)]3n2,limnS(n)=2323S(n)=\frac{4[36 n+11(n+1)]}{3 n^{2}}, \lim _{n \rightarrow \infty} S(n)=\frac{232}{3} B) S(n)=4[36n(n+1)+11(n+1)(2n+1)]3n2,limnS(n)=2323S(n)=\frac{4[36 n(n+1)+11(n+1)(2 n+1)]}{3 n^{2}}, \lim _{n \rightarrow \infty} S(n)=\frac{232}{3}

Question 51

Multiple Choice

 Rewrite i=1n[12n+(11in2) ](8in)  as a rational function S(n)  and find limnS(n) \text { Rewrite } \sum_{i=1}^{n}\left[\frac{12}{n}+\left(\frac{11 i}{n^{2}}\right) \right]\left(\frac{8 i}{n}\right) \text { as a rational function } S(n) \text { and find } \lim _{n \rightarrow \infty} S(n) \text {. }


A) S(n) =4[36n+11(n+1) ]3n2,limnS(n) =2323S(n) =\frac{4[36 n+11(n+1) ]}{3 n^{2}}, \lim _{n \rightarrow \infty} S(n) =\frac{232}{3}
B) S(n) =4[36n(n+1) +11(n+1) (2n+1) ]3n2,limnS(n) =2323S(n) =\frac{4[36 n(n+1) +11(n+1) (2 n+1) ]}{3 n^{2}}, \lim _{n \rightarrow \infty} S(n) =\frac{232}{3}
C) S(n) =4[36n(n+1) +11(n+1) (2n+1) ]3n2,limnS(n) =56S(n) =\frac{4[36 n(n+1) +11(n+1) (2 n+1) ]}{3 n^{2}}, \lim _{n \rightarrow \infty} S(n) =\frac{5}{6}
D) S(n) =4[36+11n]3n,limnS(n) =2323S(n) =\frac{4[36+11 n]}{3 n}, \lim _{n \rightarrow \infty} S(n) =\frac{232}{3}
E) S(n) =4[36n(n+1) +11(n+1) (2n+1) ]3n2, limit does not exist S(n) =\frac{4[36 n(n+1) +11(n+1) (2 n+1) ]}{3 n^{2}}, \text { limit does not exist }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions