Solved

A) S(n)=9(n+1)24n2,limnS(n)=94S(n)=\frac{9(n+1)^{2}}{4 n^{2}}, \lim _{n \rightarrow \infty} S(n)=\frac{9}{4} B) S(n)=9n2(n+1)24,limnS(n)=9S(n)=\frac{9 n^{2}(n+1)^{2}}{4}, \lim _{n \rightarrow \infty} S(n)=9

Question 32

Multiple Choice

 Rewrite i=1n9i3n5 as a rational function S(n)  and find limnS(n) \text { Rewrite } \sum_{i=1}^{n} \frac{9 i^{3}}{n^{5}} \text { as a rational function } S(n) \text { and find } \lim _{n \rightarrow \infty} S(n) \text {. }


A) S(n) =9(n+1) 24n2,limnS(n) =94S(n) =\frac{9(n+1) ^{2}}{4 n^{2}}, \lim _{n \rightarrow \infty} S(n) =\frac{9}{4}
B) S(n) =9n2(n+1) 24,limnS(n) =9S(n) =\frac{9 n^{2}(n+1) ^{2}}{4}, \lim _{n \rightarrow \infty} S(n) =9
C) S(n) =n2(n+1) 236,limnS(n) =0S(n) =\frac{n^{2}(n+1) ^{2}}{36}, \lim _{n \rightarrow \infty} S(n) =0
D) S(n) =9(n+1) 24n3,limnS(n) =0S(n) =\frac{9(n+1) ^{2}}{4 n^{3}}, \lim _{n \rightarrow \infty} S(n) =0
E) S(n) =9(n+1) 24n3, the limit does not exist S(n) =\frac{9(n+1) ^{2}}{4 n^{3}}, \text { the limit does not exist }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions