Solved

Determine a Piecewise-Defined Function for the Graph Shown Below f(x)={x,x1(x1)2+1,x>1f ( x ) = \left\{ \begin{array} { l l } | x | , & x \leq 1 \\ - ( x - 1 ) ^ { 2 } + 1 , & x > 1 \end{array} \right.

Question 29

Multiple Choice

Determine a piecewise-defined function for the graph shown below.
 Determine a piecewise-defined function for the graph shown below.    A)   f ( x )  = \left\{ \begin{array} { l l } | x | , & x \leq 1 \\ - ( x - 1 )  ^ { 2 } + 1 , & x > 1 \end{array} \right.  B)   f ( x )  = \left\{ \begin{array} { l l } | x | , & x \leq 0 \\ - ( x - 1 )  ^ { 2 } + 1 , & x \leq 0 \end{array} \right.  C)   f ( x )  = \left\{ \begin{array} { l l } | x | , & x \geq 1 \\ - x ^ { 2 } , & x \leq 1 \end{array} \right.  D)   f ( x )  = \left\{ \begin{array} { l l } | x | , & x \geq 0 \\ - x ^ { 2 } , & x \leq 1 \end{array} \right.  E)   f ( x )  = \left\{ \begin{array} { l l } | x | , & x \leq 1 \\ - ( x - 1 )  ^ { 2 } , & x > 1 \end{array} \right.


A) f(x) ={x,x1(x1) 2+1,x>1f ( x ) = \left\{ \begin{array} { l l } | x | , & x \leq 1 \\ - ( x - 1 ) ^ { 2 } + 1 , & x > 1 \end{array} \right.
B) f(x) ={x,x0(x1) 2+1,x0f ( x ) = \left\{ \begin{array} { l l } | x | , & x \leq 0 \\ - ( x - 1 ) ^ { 2 } + 1 , & x \leq 0 \end{array} \right.
C) f(x) ={x,x1x2,x1f ( x ) = \left\{ \begin{array} { l l } | x | , & x \geq 1 \\ - x ^ { 2 } , & x \leq 1 \end{array} \right.
D)
f(x) ={x,x0x2,x1f ( x ) = \left\{ \begin{array} { l l } | x | , & x \geq 0 \\ - x ^ { 2 } , & x \leq 1 \end{array} \right.
E)
f(x) ={x,x1(x1) 2,x>1f ( x ) = \left\{ \begin{array} { l l } | x | , & x \leq 1 \\ - ( x - 1 ) ^ { 2 } , & x > 1 \end{array} \right.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions