Solved

Show Algebraically That the Functions ff And gg Shown Below Are Inverse Functions

Question 55

Multiple Choice

Show algebraically that the functions ff and gg shown below are inverse functions.
f(x) =22+x,x0,g(x) =22xx,0<x1f ( x ) = \frac { 2 } { 2 + x } , x \geq 0 , \quad g ( x ) = \frac { 2 - 2 x } { x } , 0 < x \leq 1


A) f(g(x) ) =22+(22xx) =22+(1x) =1(1x) =1x1=x\begin{aligned}f(g(x) ) &=\frac{2}{2+\left(\frac{2-2 x}{x}\right) } \\&=\frac{2}{2+\left(\frac{1}{x}\right) } \\&=\frac{1}{\left(\frac{1}{x}\right) } \\&=1 \cdot \frac{x}{1} \\&=x\end{aligned}

g(f(x) ) =22(22+x) (22+x) =0(22+x) (22+x) =22+x(22+x) =(22+x) (2+x2) =2x+22+x=x\begin{aligned}g(f(x) ) &=\frac{2-2\left(\frac{2}{2+x}\right) }{\left(\frac{2}{2+x}\right) } \\\\&=\frac{0-\left(\frac{2}{2+x}\right) }{\left(\frac{2}{2+x}\right) } \\\\&=\frac{\frac{-2}{2+x}}{\left(\frac{2}{2+x}\right) } \\\\&=\left(\frac{-2}{2+x}\right) \left(\frac{2+x}{2}\right) \\\\&=\frac{2 x+2}{2+x}\\&=x\end{aligned}
B) f(g(x) ) =22+(22xx) =11+22xx=1(0x) =x\begin{aligned}f(g(x) ) &=\frac{2}{2+\left(\frac{2-2 x}{x}\right) } \\&=\frac{1}{1+\frac{2-2 x}{x}} \\&=\frac{1}{\left(\frac{0}{x}\right) } \\&=x\end{aligned}

g(f(x) ) =22(22+x) (22+x) 2(42+x) (22+x) ˉ=4+2x42+x(22+x) =2x2+x(x2+x) =2xx=x\begin{array}{l}g(f(x) ) =\frac{2-2\left(\frac{2}{2+x}\right) }{\left(\frac{2}{2+x}\right) }\\\\\=\frac{2-\left(\frac{4}{2+x}\right) }{\left(\frac{2}{2+x}\right) }\\\\=\frac{\frac{4+2 x-4}{2+x}}{\left(\frac{2}{2+x}\right) }\\\\=\frac{\frac{2 x}{2+x}}{\left(\frac{x}{2+x}\right) }\\\\=\frac{2 x}{x}\\\\=x\end{array}
C) f(g(x) ) =22+(22xx) =422xx=2(2xx) =2x2=x\begin{aligned}f(g(x) ) &=\frac{2}{2+\left(\frac{2-2 x}{x}\right) } \\&=\frac{4}{\frac{2-2 x}{x}} \\&=\frac{2}{\left(\frac{2 x}{x}\right) } \\&=2 \cdot \frac{x}{2} \\&=x\end{aligned}
g(f(x) ) =22(22+x) (22+x) =(22+2x) (22+x) =(22+2x) (2+x2) =2+x2+2x=x2x=x\begin{aligned}g(f(x) ) &=\frac{2-2\left(\frac{2}{2+x}\right) }{\left(\frac{2}{2+x}\right) } \\\\&=\frac{\left(\frac{2}{2+2 x}\right) }{\left(\frac{2}{2+x}\right) } \\\\&=\left(\frac{2}{2+2 x}\right) \left(\frac{2+x}{2}\right) \\\\&=\frac{2+x}{2+2 x} \\\\&=\frac{x}{2 x} \\\\&=x\end{aligned}
D) f(g(x) ) =22+(22xx) =22x+22xx=22x(2x) =1x1=x\begin{aligned}f(g(x) ) &=\frac{2}{2+\left(\frac{2-2 x}{x}\right) } \\&=\frac{2}{\frac{2 x+2-2 x}{x}} \\&=\frac{2-2 x}{\left(\frac{2}{x}\right) } \\&=\frac{1-x}{1} \\&=x\end{aligned}
g(f(x) ) =22(22+x) (22+x) =(42+x) (22+x) =(42+x) (2+x2) =2(2+x) 2+x=2x2=x\begin{aligned}g(f(x) ) &=\frac{2-2\left(\frac{2}{2+x}\right) }{\left(\frac{2}{2+x}\right) } \\&=\frac{\left(\frac{4}{2+x}\right) }{\left(\frac{2}{2+x}\right) } \\&=\left(\frac{4}{2+x}\right) \left(\frac{2+x}{2}\right) \\&=\frac{2(2+x) }{2+x} \\&=\frac{2 x}{2} \\&=x\end{aligned}
E) f(g(x) ) =22+(22xx) =22x+22xx=2(2x) =2x2=x\begin{aligned}f(g(x) ) &=\frac{2}{2+\left(\frac{2-2 x}{x}\right) } \\&=\frac{2}{\frac{2 x+2-2 x}{x}} \\&=\frac{2}{\left(\frac{2}{x}\right) } \\&=2 \cdot \frac{x}{2} \\&=x\end{aligned}

g(f(x) ) =22(22+x) (22+x) =2(42+x) (22+x) =4+2x42+x(22+x) =2x2+x(22+x) =2x2=x\begin{array}{l}g(f(x) ) =\frac{2-2\left(\frac{2}{2+x}\right) }{\left(\frac{2}{2+x}\right) }\\\\=\frac{2-\left(\frac{4}{2+x}\right) }{\left(\frac{2}{2+x}\right) }\\\\=\frac{\frac{4+2 x-4}{2+x}}{\left(\frac{2}{2+x}\right) }\\\\=\frac{\frac{2 x}{2+x}}{\left(\frac{2}{2+x}\right) }\\\\=\frac{2 x}{2}\\\\=x\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions