Solved

 Find the fourth roots of 1232i. Write the roots in trigonometric form. \text { Find the fourth roots of }-\frac{1}{2}-\frac{\sqrt{3}}{2} i \text {. Write the roots in trigonometric form. }

Question 50

Multiple Choice

 Find the fourth roots of 1232i. Write the roots in trigonometric form. \text { Find the fourth roots of }-\frac{1}{2}-\frac{\sqrt{3}}{2} i \text {. Write the roots in trigonometric form. }


A)
w1=cos(50) +isin(50) w2=cos(140) +isin(140) w3=cos(230) +isin(230) w4=cos(320) +isin(320) \begin{array}{l}w_{1}=\cos \left(50^{\circ}\right) +i \sin \left(50^{\circ}\right) \\w_{2}=\cos \left(140^{\circ}\right) +i \sin \left(140^{\circ}\right) \\w_{3}=\cos \left(230^{\circ}\right) +i \sin \left(230^{\circ}\right) \\w_{4}=\cos \left(320^{\circ}\right) +i \sin \left(320^{\circ}\right) \end{array}

B)
w1=cos(60) +isin(60) w2=cos(150) +isin(150) w3=cos(240) +isin(240) w4=cos(330) +isin(330) \begin{array}{l}w_{1}=\cos \left(60^{\circ}\right) +i \sin \left(60^{\circ}\right) \\w_{2}=\cos \left(150^{\circ}\right) +i \sin \left(150^{\circ}\right) \\w_{3}=\cos \left(240^{\circ}\right) +i \sin \left(240^{\circ}\right) \\w_{4}=\cos \left(330^{\circ}\right) +i \sin \left(330^{\circ}\right) \end{array}

C)
w1=cos(65) +isin(65) w2=cos(155) +isin(155) w3=cos(245) +isin(245) w4=cos(335) +isin(335) \begin{array}{l}w_{1}=\cos \left(65^{\circ}\right) +i \sin \left(65^{\circ}\right) \\w_{2}=\cos \left(155^{\circ}\right) +i \sin \left(155^{\circ}\right) \\w_{3}=\cos \left(245^{\circ}\right) +i \sin \left(245^{\circ}\right) \\w_{4}=\cos \left(335^{\circ}\right) +i \sin \left(335^{\circ}\right) \end{array}

D)
w1=cos(55) +isin(55) w2=cos(145) +isin(145) w3=cos(235) +isin(235) w4=cos(325) +isin(325) \begin{array}{l}w_{1}=\cos \left(55^{\circ}\right) +i \sin \left(55^{\circ}\right) \\w_{2}=\cos \left(145^{\circ}\right) +i \sin \left(145^{\circ}\right) \\w_{3}=\cos \left(235^{\circ}\right) +i \sin \left(235^{\circ}\right) \\w_{4}=\cos \left(325^{\circ}\right) +i \sin \left(325^{\circ}\right) \end{array}
E)
w1=cos(70) +isin(70) w2=cos(160) +isin(160) w3=cos(250) +isin(250) w4=cos(340) +isin(340) \begin{array} { l } w _ { 1 } = \cos \left( 70 ^ { \circ } \right) + i \sin \left( 70 ^ { \circ } \right) \\w _ { 2 } = \cos \left( 160 ^ { \circ } \right) + i \sin \left( 160 ^ { \circ } \right) \\w _ { 3 } = \cos \left( 250 ^ { \circ } \right) + i \sin \left( 250 ^ { \circ } \right) \\w _ { 4 } = \cos \left( 340 ^ { \circ } \right) + i \sin \left( 340 ^ { \circ } \right) \end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions