Solved

 Find the fourth roots of 1232i. Write the roots in trigonometric form. \text { Find the fourth roots of } \frac{1}{2}-\frac{\sqrt{3}}{2} i \text {. Write the roots in trigonometric form. }

Question 95

Multiple Choice

 Find the fourth roots of 1232i. Write the roots in trigonometric form. \text { Find the fourth roots of } \frac{1}{2}-\frac{\sqrt{3}}{2} i \text {. Write the roots in trigonometric form. }


A)
w1=cos(65) +isin(65) w2=cos(155) +isin(155) w3=cos(245) +isin(245) w4=cos(335) +isin(335) \begin{array}{l}w_{1}=\cos \left(65^{\circ}\right) +i \sin \left(65^{\circ}\right) \\w_{2}=\cos \left(155^{\circ}\right) +i \sin \left(155^{\circ}\right) \\w_{3}=\cos \left(245^{\circ}\right) +i \sin \left(245^{\circ}\right) \\w_{4}=\cos \left(335^{\circ}\right) +i \sin \left(335^{\circ}\right) \end{array}

B)
w1=cos(75) +isin(75) w2=cos(165) +isin(165) w3=cos(255) +isin(255) w4=cos(345) +isin(345) \begin{array}{l}w_{1}=\cos \left(75^{\circ}\right) +i \sin \left(75^{\circ}\right) \\w_{2}=\cos \left(165^{\circ}\right) +i \sin \left(165^{\circ}\right) \\w_{3}=\cos \left(255^{\circ}\right) +i \sin \left(255^{\circ}\right) \\w_{4}=\cos \left(345^{\circ}\right) +i \sin \left(345^{\circ}\right) \end{array}

C)
w1=cos(80) +isin(80) w2=cos(170) +isin(170) w3=cos(260) +isin(260) w4=cos(350) +isin(350) \begin{array}{l}w_{1}=\cos \left(80^{\circ}\right) +i \sin \left(80^{\circ}\right) \\w_{2}=\cos \left(170^{\circ}\right) +i \sin \left(170^{\circ}\right) \\w_{3}=\cos \left(260^{\circ}\right) +i \sin \left(260^{\circ}\right) \\w_{4}=\cos \left(350^{\circ}\right) +i \sin \left(350^{\circ}\right) \end{array}

D)
w1=cos(70) +isin(70) w2=cos(160) +isin(160) w3=cos(250) +isin(250) w4=cos(340) +isin(340) \begin{array}{l}w_{1}=\cos \left(70^{\circ}\right) +i \sin \left(70^{\circ}\right) \\w_{2}=\cos \left(160^{\circ}\right) +i \sin \left(160^{\circ}\right) \\w_{3}=\cos \left(250^{\circ}\right) +i \sin \left(250^{\circ}\right) \\w_{4}=\cos \left(340^{\circ}\right) +i \sin \left(340^{\circ}\right) \end{array}

E)
w1=cos(85) +isin(85) w2=cos(175) +isin(175) w3=cos(265) +isin(265) w4=cos(355) +isin(355) \begin{array}{l}w_{1}=\cos \left(85^{\circ}\right) +i \sin \left(85^{\circ}\right) \\w_{2}=\cos \left(175^{\circ}\right) +i \sin \left(175^{\circ}\right) \\w_{3}=\cos \left(265^{\circ}\right) +i \sin \left(265^{\circ}\right) \\w_{4}=\cos \left(355^{\circ}\right) +i \sin \left(355^{\circ}\right) \end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions