Solved

Solve the System of Linear Equations Using the Inverse Matrix

Question 115

Multiple Choice

Solve the system of linear equations
{4x18x24x38x4=012x120x28x312x4=98x120x28x320x4=64x1+16x2+16x3+44x4=0\left\{ \begin{array} { l } 4 x _ { 1 } - 8 x _ { 2 } - 4 x _ { 3 } - 8 x _ { 4 } = 0 \\12 x _ { 1 } - 20 x _ { 2 } - 8 x _ { 3 } - 12 x _ { 4 } = - 9 \\8 x _ { 1 } - 20 x _ { 2 } - 8 x _ { 3 } - 20 x _ { 4 } = 6 \\- 4 x _ { 1 } + 16 x _ { 2 } + 16 x _ { 3 } + 44 x _ { 4 } = 0\end{array} \right.
using the inverse matrix 14[24712103012973212311]\frac { 1 } { 4 } \left[ \begin{array} { c c c c } - 24 & 7 & 1 & - 2 \\ - 10 & 3 & 0 & - 1 \\ - 29 & 7 & 3 & - 2 \\ 12 & - 3 & - 1 & 1 \end{array} \right] .


A)
[x1x2x3x4]=[574274454214]\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3} \\x_{4}\end{array}\right]=\left[\begin{array}{r}-\frac{57}{4} \\-\frac{27}{4} \\-\frac{45}{4} \\\frac{21}{4}\end{array}\right]


B) [x1x2x3x4]=[214154274274]\left[ \begin{array} { l } x _ { 1 } \\ x _ { 2 } \\ x _ { 3 } \\ x _ { 4 } \end{array} \right] = \left[ \begin{array} { c } - \frac { 21 } { 4 } \\ - \frac { 15 } { 4 } \\ \frac { 27 } { 4 } \\ - \frac { 27 } { 4 } \end{array} \right]

C) [x1x2x3x4]=[2745740214]\left[ \begin{array} { l } x _ { 1 } \\ x _ { 2 } \\ x _ { 3 } \\ x _ { 4 } \end{array} \right] = \left[ \begin{array} { c } - \frac { 27 } { 4 } \\ - \frac { 57 } { 4 } \\ 0 \\ \frac { 21 } { 4 } \end{array} \right]
D)
[x1x2x3x4]=[9434032]\left[ \begin{array} { l } x _ { 1 } \\ x _ { 2 } \\ x _ { 3 } \\ x _ { 4 } \end{array} \right] = \left[ \begin{array} { c } - \frac { 9 } { 4 } \\ \frac { 3 } { 4 } \\ 0 \\ \frac { 3 } { 2 } \end{array} \right]


E) [x1x2x3x4]=[034032]\left[ \begin{array} { l } x _ { 1 } \\ x _ { 2 } \\ x _ { 3 } \\ x _ { 4 } \end{array} \right] = \left[ \begin{array} { c } 0 \\ - \frac { 3 } { 4 } \\ 0 \\ - \frac { 3 } { 2 } \end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions