Solved

Find a Polar Equation of the Conic with the Given  Conic  Eccentricity  Directrix  Ellipse e=25y=2\begin{array}{lcc}\text { Conic } & \text { Eccentricity } & \text { Directrix } \\\text { Ellipse } & e=\frac{2}{5} & y=2\end{array}

Question 116

Multiple Choice

Find a polar equation of the conic with the given characteristics and with one focus at the pole.
 Conic  Eccentricity  Directrix  Ellipse e=25y=2\begin{array}{lcc}\text { Conic } & \text { Eccentricity } & \text { Directrix } \\\text { Ellipse } & e=\frac{2}{5} & y=2\end{array}

Ellipse e=25e = \frac { 2 } { 5 } y=2y = 2


A) r=25+2cosθr = \frac { 2 } { 5 + 2 \cos \theta }
B) r=45+2cosθr = \frac { 4 } { 5 + 2 \cos \theta }
C) r=452cosθr = \frac { 4 } { 5 - 2 \cos \theta }
D) r=452sinθr = \frac { 4 } { 5 - 2 \sin \theta }
E) r=45+2sinθr = \frac { 4 } { 5 + 2 \sin \theta }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions