Solved

Rewrite i=1n[12n+(11in2)](8in)\sum _ { i = 1 } ^ { n } \left[ \frac { 12 } { n } + \left( \frac { 11 i } { n ^ { 2 } } \right) \right] \left( \frac { 8 i } { n } \right)

Question 29

Multiple Choice

Rewrite i=1n[12n+(11in2) ](8in) \sum _ { i = 1 } ^ { n } \left[ \frac { 12 } { n } + \left( \frac { 11 i } { n ^ { 2 } } \right) \right] \left( \frac { 8 i } { n } \right) as a rational function S(n) S ( n ) and find limnS(n) \lim _ { n \rightarrow \infty } S ( n ) .


A) S(n) =4[36n+11(n+1) ]3n2,limnS(n) =2323S ( n ) = \frac { 4 [ 36 n + 11 ( n + 1 ) ] } { 3 n ^ { 2 } } , \lim _ { n \rightarrow \infty } S ( n ) = \frac { 232 } { 3 }
B) S(n) =4[36n(n+1) +11(n+1) (2n+1) ]3n2,limnS(n) =2323S ( n ) = \frac { 4 [ 36 n ( n + 1 ) + 11 ( n + 1 ) ( 2 n + 1 ) ] } { 3 n ^ { 2 } } , \lim _ { n \rightarrow \infty } S ( n ) = \frac { 232 } { 3 }
C) S(n) =4[36n(n+1) +11(n+1) (2n+1) ]3n2,limnS(n) =56S ( n ) = \frac { 4 [ 36 n ( n + 1 ) + 11 ( n + 1 ) ( 2 n + 1 ) ] } { 3 n ^ { 2 } } , \lim _ { n \rightarrow \infty } S ( n ) = \frac { 5 } { 6 }
D) S(n) =4[36+11n]3n,limnS(n) =2323S ( n ) = \frac { 4 [ 36 + 11 n ] } { 3 n } , \lim _ { n \rightarrow \infty } S ( n ) = \frac { 232 } { 3 }
E) S(n) =4[36n(n+1) +11(n+1) (2n+1) ]3n2S ( n ) = \frac { 4 [ 36 n ( n + 1 ) + 11 ( n + 1 ) ( 2 n + 1 ) ] } { 3 n ^ { 2 } } , limit does not exist

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions