Solved

Suppose That a Population Grows According to a Logistic Model k=0.05k = 0.05

Question 5

Multiple Choice

Suppose that a population grows according to a logistic model with carrying capacity 2,000 and k=0.05k = 0.05 per year. Choose the logistic differential equation for these data.


A) dP(t) dt=P(1+p2,000) \frac { d P ( t ) } { d t } = P \left( 1 + \frac { p } { 2,000 } \right)
B) dP(t) dt=0.05P(1+p5) \frac { d P ( t ) } { d t } = 0.05 P \left( 1 + \frac { p } { 5 } \right)
C) dP(t) dt=2,000P(1+p0.05) \frac { d P ( t ) } { d t } = 2,000 P \left( 1 + \frac { p } { 0.05 } \right)
D) dP(t) dt=0.05P(1+p2,000) \frac { d P ( t ) } { d t } = 0.05 P \left( 1 + \frac { p } { 2,000 } \right)
E) dP(t) dt=0.05P(1p2,000) \frac { d P ( t ) } { d t } = 0.05 P \left( 1 - \frac { p } { 2,000 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions