Solved

Solve the Initial-Value Problem (1+cosx)dydx=(6+ey)sinx,y(0)=0( 1 + \cos x ) \frac { d y } { d x } = \left( 6 + e ^ { - y } \right) \sin x , y ( 0 ) = 0

Question 52

Multiple Choice

Solve the initial-value problem. (1+cosx) dydx=(6+ey) sinx,y(0) =0( 1 + \cos x ) \frac { d y } { d x } = \left( 6 + e ^ { - y } \right) \sin x , y ( 0 ) = 0


A) y=ln(6+cosx) ln(6cosx) y = \frac { \ln ( 6 + \cos x ) } { \ln ( 6 - \cos x ) }
B)
y=ln(16(sec12(x2) 1) y = \ln \left( \frac { 1 } { 6 } \left( \sec ^ { 12 } \left( \frac { x } { 2 } \right) - 1 \right) \right.
C) y=ln(6cosx) (6+cosx) y = \ln ( 6 - \cos x ) ( 6 + \cos x )
D)
y=ln(16(7sec12(x2) 1) y = \ln \left( \frac { 1 } { 6 } \left( 7 \sec ^ { 12 } \left( \frac { x } { 2 } \right) - 1 \right) \right.
E)
y=ln(6sec(x2) 1) y = \ln \left( 6 \sec \left( \frac { x } { 2 } \right) - 1 \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions