Solved

Set Up, but Do Not Evaluate, an Integral for the Length

Question 18

Multiple Choice

Set up, but do not evaluate, an integral for the length of the curve.
y=2exsinx,0x3π2y = 2 e ^ { x } \sin x , \quad 0 \leq x \leq \frac { 3 \pi } { 2 }


A)
L=03x/214e2x(1+sin2x) dxL = \int _ { 0 } ^ { 3 x / 2 } \sqrt { 1 - 4 e ^ { 2 x } ( 1 + \sin 2 x ) } d x
B)
L=03x/21+4e2x(1sinx) dxL = \int _ { 0 } ^ { 3 x / 2 } \sqrt { 1 + 4 e ^ { 2 x } ( 1 - \sin x ) } d x
C)
L=03x/21+4e2x(1sin2x) dxL = \int _ { 0 } ^ { 3 x / 2 } \sqrt { 1 + 4 e ^ { 2 x } ( 1 - \sin 2 x ) } d x
D)
L=03x/214e2x(1sin2x) dxL = \int _ { 0 } ^ { 3 x / 2 } \sqrt { 1 - 4 e ^ { 2 x } ( 1 - \sin 2 x ) } d x
E)
L=03x/21+4e2x(1+sin2x) dxL = \int _ { 0 } ^ { 3 x / 2 } \sqrt { 1 + 4 e ^ { 2 x } ( 1 + \sin 2 x ) } d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions