Solved

Use a Table of Integrals to Evaluate the Integral x3sin(x2+3)dx\int x ^ { 3 } \sin \left( x ^ { 2 } + 3 \right) d x

Question 9

Multiple Choice

Use a table of integrals to evaluate the integral. x3sin(x2+3) dx\int x ^ { 3 } \sin \left( x ^ { 2 } + 3 \right) d x


A) 12sin(x2+3) 12x2cos(x2+3) +C\frac { 1 } { 2 } \sin \left( x ^ { 2 } + \sqrt { 3 } \right) - \frac { 1 } { 2 } x ^ { 2 } \cos \left( x ^ { 2 } + \sqrt { 3 } \right) + C
B) 12sin(x2+3) 12x2cos(x2+3) +C\frac { 1 } { 2 } \sin \left( x ^ { 2 } + 3 \right) - \frac { 1 } { 2 } x ^ { 2 } \cos \left( x ^ { 2 } + 3 \right) + C
C) 12sin(x2+3) 12x2cos(x2+3) +C- \frac { 1 } { 2 } \sin \left( x ^ { 2 } + \sqrt { 3 } \right) - \frac { 1 } { 2 } x ^ { 2 } \cos \left( x ^ { 2 } + \sqrt { 3 } \right) + C
D) 12sin(x2+3) 12x2cos(x2+3) +C- \frac { 1 } { 2 } \sin \left( x ^ { 2 } + 3 \right) - \frac { 1 } { 2 } x ^ { 2 } \cos \left( x ^ { 2 } + 3 \right) + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions