Solved

Find the Inverse Of ff Then Sketch the Graphs Of Then

Question 30

Multiple Choice

Find the inverse of ff . Then sketch the graphs of ff and f1f ^ { - 1 } on the same set of axes.
f(x) =16x2,x0f ( x ) = \sqrt { 16 - x ^ { 2 } } , x \geq 0


A)
f1(x) =4+x2,x0f^{-1}(x) =\sqrt{4+x^{2}}, x \geq 0
 Find the inverse of  f . Then sketch the graphs of  f  and  f ^ { - 1 }  on the same set of axes.  f ( x )  = \sqrt { 16 - x ^ { 2 } } , x \geq 0  A)   f^{-1}(x) =\sqrt{4+x^{2}}, x \geq 0     B)   f ^ { - 1 } ( x )  = - \sqrt { 16 - x ^ { 2 } } , x \geq 0     C)   f ^ { - 1 } ( x )  = \sqrt { 16 - x ^ { 2 } } , x \geq 0     D)   f ^ { - 1 } ( x )  = - \sqrt { 4 + x ^ { 2 } } , x \geq 0

B)
f1(x) =16x2,x0f ^ { - 1 } ( x ) = - \sqrt { 16 - x ^ { 2 } } , x \geq 0
 Find the inverse of  f . Then sketch the graphs of  f  and  f ^ { - 1 }  on the same set of axes.  f ( x )  = \sqrt { 16 - x ^ { 2 } } , x \geq 0  A)   f^{-1}(x) =\sqrt{4+x^{2}}, x \geq 0     B)   f ^ { - 1 } ( x )  = - \sqrt { 16 - x ^ { 2 } } , x \geq 0     C)   f ^ { - 1 } ( x )  = \sqrt { 16 - x ^ { 2 } } , x \geq 0     D)   f ^ { - 1 } ( x )  = - \sqrt { 4 + x ^ { 2 } } , x \geq 0

C) f1(x) =16x2,x0f ^ { - 1 } ( x ) = \sqrt { 16 - x ^ { 2 } } , x \geq 0
 Find the inverse of  f . Then sketch the graphs of  f  and  f ^ { - 1 }  on the same set of axes.  f ( x )  = \sqrt { 16 - x ^ { 2 } } , x \geq 0  A)   f^{-1}(x) =\sqrt{4+x^{2}}, x \geq 0     B)   f ^ { - 1 } ( x )  = - \sqrt { 16 - x ^ { 2 } } , x \geq 0     C)   f ^ { - 1 } ( x )  = \sqrt { 16 - x ^ { 2 } } , x \geq 0     D)   f ^ { - 1 } ( x )  = - \sqrt { 4 + x ^ { 2 } } , x \geq 0

D) f1(x) =4+x2,x0f ^ { - 1 } ( x ) = - \sqrt { 4 + x ^ { 2 } } , x \geq 0
 Find the inverse of  f . Then sketch the graphs of  f  and  f ^ { - 1 }  on the same set of axes.  f ( x )  = \sqrt { 16 - x ^ { 2 } } , x \geq 0  A)   f^{-1}(x) =\sqrt{4+x^{2}}, x \geq 0     B)   f ^ { - 1 } ( x )  = - \sqrt { 16 - x ^ { 2 } } , x \geq 0     C)   f ^ { - 1 } ( x )  = \sqrt { 16 - x ^ { 2 } } , x \geq 0     D)   f ^ { - 1 } ( x )  = - \sqrt { 4 + x ^ { 2 } } , x \geq 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions