Solved

Solve the Differential Equation Using the Method of Variation of Parameters

Question 25

Multiple Choice

Solve the differential equation using the method of variation of parameters. ytt+y=secx,π4<x<π2y ^ { tt } + y = \sec x , \frac { \pi } { 4 } < x < \frac { \pi } { 2 }


A) y(x) =c1+[c2+ln(sinx) ]sinxy ( x ) = c _ { 1 } + \left[ c _ { 2 } + \ln ( \sin x ) \right] \sin x
B) y(x) =(c1+x) sinx+c2+ln(cosx) y ( x ) = \left( c _ { 1 } + x \right) \sin x + c _ { 2 } + \ln ( \cos x )
C) y(x) =π2sinx+[π2+ln(cosx) ]cosxy ( x ) = \frac { \pi } { 2 } \sin x + \left[ \frac { \pi } { 2 } + \ln ( \cos x ) \right] \cos x
D) y(x) =[π4+ln(cosx) ]cosxy ( x ) = \left[ \frac { \pi } { 4 } + \ln ( \cos x ) \right] \cos x
E) y(x) =(c1+x) sinx+[c2+ln(cosx) ]cosxy ( x ) = \left( c _ { 1 } + x \right) \sin x + \left[ c _ { 2 } + \ln ( \cos x ) \right] \cos x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions