Solved

Find the Exact Area of the Surface Obtained by Rotating x=2cos3θ,y=2sin3θ,0θπ/2x = 2 \cos ^ { 3 } \theta , \quad y = 2 \sin ^ { 3 } \theta , \quad 0 \leq \theta \leq \pi / 2

Question 13

Multiple Choice

Find the exact area of the surface obtained by rotating the given curve about the x-axis. x=2cos3θ,y=2sin3θ,0θπ/2x = 2 \cos ^ { 3 } \theta , \quad y = 2 \sin ^ { 3 } \theta , \quad 0 \leq \theta \leq \pi / 2


A) 24π5\frac { 24 \pi } { 5 }
B) 18π5\frac { 18 \pi } { 5 }
C) 12π5\frac { 12 \pi } { 5 }
D) 2π4\frac { 2 \pi } { 4 }
E) None of these

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions