Solved

Solve the Inequality and Graph the Solution on the Real x2+x12x0\frac { x ^ { 2 } + x - 12 } { x } \geq 0

Question 120

Multiple Choice

Solve the inequality and graph the solution on the real number line. x2+x12x0\frac { x ^ { 2 } + x - 12 } { x } \geq 0


A) [4,0) [3,) [ - 4,0 ) \cap [ 3 , \infty )
 Solve the inequality and graph the solution on the real number line.  \frac { x ^ { 2 } + x - 12 } { x } \geq 0   A)   [ - 4,0 )  \cap [ 3 , \infty )      B)   [ 4,0 )  \cup [ 3 , \infty )      C)   [ 4,0 )  \cup [ - 3 , \infty )      D)   [ - 4,0 )  \cap [ - 3 , \infty )      E)   [ - 4,0 )  \cup [ 3 , \infty )

B) [4,0) [3,) [ 4,0 ) \cup [ 3 , \infty )
 Solve the inequality and graph the solution on the real number line.  \frac { x ^ { 2 } + x - 12 } { x } \geq 0   A)   [ - 4,0 )  \cap [ 3 , \infty )      B)   [ 4,0 )  \cup [ 3 , \infty )      C)   [ 4,0 )  \cup [ - 3 , \infty )      D)   [ - 4,0 )  \cap [ - 3 , \infty )      E)   [ - 4,0 )  \cup [ 3 , \infty )

C) [4,0) [3,) [ 4,0 ) \cup [ - 3 , \infty )
 Solve the inequality and graph the solution on the real number line.  \frac { x ^ { 2 } + x - 12 } { x } \geq 0   A)   [ - 4,0 )  \cap [ 3 , \infty )      B)   [ 4,0 )  \cup [ 3 , \infty )      C)   [ 4,0 )  \cup [ - 3 , \infty )      D)   [ - 4,0 )  \cap [ - 3 , \infty )      E)   [ - 4,0 )  \cup [ 3 , \infty )

D) [4,0) [3,) [ - 4,0 ) \cap [ - 3 , \infty )
 Solve the inequality and graph the solution on the real number line.  \frac { x ^ { 2 } + x - 12 } { x } \geq 0   A)   [ - 4,0 )  \cap [ 3 , \infty )      B)   [ 4,0 )  \cup [ 3 , \infty )      C)   [ 4,0 )  \cup [ - 3 , \infty )      D)   [ - 4,0 )  \cap [ - 3 , \infty )      E)   [ - 4,0 )  \cup [ 3 , \infty )

E) [4,0) [3,) [ - 4,0 ) \cup [ 3 , \infty )
 Solve the inequality and graph the solution on the real number line.  \frac { x ^ { 2 } + x - 12 } { x } \geq 0   A)   [ - 4,0 )  \cap [ 3 , \infty )      B)   [ 4,0 )  \cup [ 3 , \infty )      C)   [ 4,0 )  \cup [ - 3 , \infty )      D)   [ - 4,0 )  \cap [ - 3 , \infty )      E)   [ - 4,0 )  \cup [ 3 , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions