Solved

Find the Angle α\alpha Between Two Nonvertical Lines L1 and L2L _ { 1 } \text { and } L _ { 2 }

Question 13

Multiple Choice

Find the angle α\alpha between two nonvertical lines L1 and L2L _ { 1 } \text { and } L _ { 2 } . The angle α\alpha satisfies the equation tanα=m2m11+m2m1\tan \alpha = \left| \frac { m _ { 2 } - m _ { 1 } } { 1 + m _ { 2 } m _ { 1 } } \right| where m1m _ { 1 } and m2m _ { 2 } are slopes of L1L _ { 1 } and L2L _ { 2 } , respectively.
(Assume that m1m21m _ { 1 } m _ { 2 } \neq - 1 .)
L1:3x2y=5L2:x+y=1\begin{array} { l } L _ { 1 } : 3 x - 2 y = 5 \\L _ { 2 } : x + y = 1\end{array}
Round your answer to one decimal place.


A) 78.778.7 ^ { \circ }
B) 79.779.7 ^ { \circ }
C) 81.781.7 ^ { \circ }
D) 80.780.7 ^ { \circ }
E) 82.782.7 ^ { \circ }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions