Solved

Find the Point (x,y)( x , y ) On the Unit Circle That Corresponds to the Real Number

Question 26

Multiple Choice

Find the point (x,y) ( x , y ) on the unit circle that corresponds to the real number t. (Round your answer to one decimal place.) t=π2t = \frac { \pi } { 2 }


A) t=π2t = \frac { \pi } { 2 } corresponds to the point (1,0) ( 1 , - 0 ) .
B) t=π2t = \frac { \pi } { 2 } corresponds to the point (0,1) ( - 0 , - 1 ) .
C) t=π2t = \frac { \pi } { 2 } corresponds to the point (0,1) .( 0,1 ) .
D) t=π2t = \frac { \pi } { 2 } corresponds to the point (1,0) .( 1,0 ) .
E) t=π2t = \frac { \pi } { 2 } corresponds to the point (0,1) ( 0 , - 1 ) .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions