Solved

Find the Exact Values of the Three Trignometric Functions of the Angle

Question 19

Multiple Choice

Find the exact values of the three trignometric functions of the angle θ\theta (sinθ,cosθ,tanθ) ( \sin \theta , \cos \theta , \tan \theta ) shown in the figure. (Use the Pythagorean Theorem to find the third side of the traingle.)
 Find the exact values of the three trignometric functions of the angle  \theta   ( \sin \theta , \cos \theta , \tan \theta )   shown in the figure. (Use the Pythagorean Theorem to find the third side of the traingle.)       a=2   A)  \sin \theta = \sqrt { 2 } , \tan \theta = 1 , \quad \sec \theta = \frac { \sqrt { 2 } } { 2 }  B)  \sin \theta = 1 , \tan \theta = \sqrt { 2 } , \quad \sec \theta = \frac { \sqrt { 2 } } { 2 }  C)  \sin \theta = \frac { \sqrt { 2 } } { 2 } , \tan \theta = \sqrt { 2 } , \sec \theta = 1  D)  \sin \theta = \frac { \sqrt { 2 } } { 2 } , \tan \theta = 1 , \sec \theta = \sqrt { 2 }  E)  \sin \theta = 1 , \tan \theta = \frac { \sqrt { 2 } } { 2 } , \sec \theta = \sqrt { 2 }
a=2a=2


A) sinθ=2,tanθ=1,secθ=22\sin \theta = \sqrt { 2 } , \tan \theta = 1 , \quad \sec \theta = \frac { \sqrt { 2 } } { 2 }
B) sinθ=1,tanθ=2,secθ=22\sin \theta = 1 , \tan \theta = \sqrt { 2 } , \quad \sec \theta = \frac { \sqrt { 2 } } { 2 }
C) sinθ=22,tanθ=2,secθ=1\sin \theta = \frac { \sqrt { 2 } } { 2 } , \tan \theta = \sqrt { 2 } , \sec \theta = 1
D) sinθ=22,tanθ=1,secθ=2\sin \theta = \frac { \sqrt { 2 } } { 2 } , \tan \theta = 1 , \sec \theta = \sqrt { 2 }
E) sinθ=1,tanθ=22,secθ=2\sin \theta = 1 , \tan \theta = \frac { \sqrt { 2 } } { 2 } , \sec \theta = \sqrt { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions