Solved

Find the Point (x,y)( x , y ) On the Unit Circle That Corresponds to the Real Number

Question 60

Multiple Choice

Find the point (x,y) ( x , y ) on the unit circle that corresponds to the real number t. t=π3t = \frac { \pi } { 3 }


A) t=π3t = \frac { \pi } { 3 } corresponds to the point (32,12) \left( - \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right) .
B) t=π3t = \frac { \pi } { 3 } corresponds to the point (32,12) \left( \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right) .
C) t=π3t = \frac { \pi } { 3 } corresponds to the point (12,32) \left( \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right) .
D) t=π3t = \frac { \pi } { 3 } corresponds to the point (32,12) \left( \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right) .
E) t=π3t = \frac { \pi } { 3 } corresponds to the point (12,32) \left( \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right) .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions