Solved

Find the Standard Form of the Equation of the Ellipse x225+y225=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 25 } = 1

Question 33

Multiple Choice

Find the standard form of the equation of the ellipse with the given characteristics and center at the origin.  Find the standard form of the equation of the ellipse with the given characteristics and center at the origin.    A)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 25 } = 1  B)   \frac { x } { 25 } + \frac { y } { 49 } = 1  C)   \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 49 } = 1  D)   \frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 49 } = 1  E)   \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 49 } = 1


A) x225+y225=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 25 } = 1
B) x25+y49=1\frac { x } { 25 } + \frac { y } { 49 } = 1
C) x225+y249=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 49 } = 1
D) x225y249=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 49 } = 1
E) x249+y249=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 49 } = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions