Solved

If f(x)=6cosx+sin2xf ( x ) = 6 \cos x + \sin ^ { 2 } x

Question 44

Multiple Choice

If f(x) =6cosx+sin2xf ( x ) = 6 \cos x + \sin ^ { 2 } x , find f(x) f ^ { \prime } ( x ) and f(x) f ^ { \prime \prime } ( x )


A) f(x) =6cos(2x) +2cos(x) f ^ { \prime \prime } ( x ) = - 6 \cos ( 2 x ) + 2 \cos ( x )
B) f(x) =6sin(x) +sin(2x) f ^ { \prime } ( x ) = - 6 \sin ( x ) + \sin ( 2 x )
C) f(x) =6sin(2x) +sin(x) f ^ { \prime } ( x ) = - 6 \sin ( 2 x ) + \sin ( x )
D) f(x) =6cos(x) +2cos(2x) f ^ { \prime \prime } ( x ) = - 6 \cos ( x ) + 2 \cos ( 2 x )
E) f(x) =2cos(2x) +6cos(x) f ^ { \prime \prime } ( x ) = - 2 \cos ( 2 x ) + 6 \cos ( x )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions