Solved

Differentiate K(x)=(3x5+1)(x64x)K ( x ) = \left( 3 x ^ { 5 } + 1 \right) \left( x ^ { 6 } - 4 x \right)

Question 28

Multiple Choice

Differentiate.
K(x) =(3x5+1) (x64x) K ( x ) = \left( 3 x ^ { 5 } + 1 \right) \left( x ^ { 6 } - 4 x \right)


A) 15x4(x64x) +(3x5+1) (6x54) 15 x ^ { 4 } \left( x ^ { 6 } - 4 x \right) + \left( 3 x ^ { 5 } + 1 \right) \left( 6 x ^ { 5 } - 4 \right)
B) (x64x) +(3x5+1) \left( x ^ { 6 } - 4 x \right) + \left( 3 x ^ { 5 } + 1 \right)
C) 15x4(6x54) +(3x5+1) (x64x) 15 x ^ { 4 } \left( 6 x ^ { 5 } - 4 \right) + \left( 3 x ^ { 5 } + 1 \right) \left( x ^ { 6 } - 4 x \right)
D) 15x4(6x5) +(3x5) (x64x) 15 x ^ { 4 } \left( 6 x ^ { 5 } \right) + \left( 3 x ^ { 5 } \right) \left( x ^ { 6 } - 4 x \right)
E) (3x5+1) (x64x) +15x4(6x54) +1\left( 3 x ^ { 5 } + 1 \right) \left( x ^ { 6 } - 4 x \right) + 15 x ^ { 4 } \left( 6 x ^ { 5 } - 4 \right) + 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions