Short Answer
A piece of wire long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. How should the wire be cut for the square so that the total area enclosed is a minimum?
Round your answer to the nearest hundredth.
Correct Answer:

Verified
Correct Answer:
Verified
Q1: <span class="ql-formula" data-value="\text { What is the
Q2: Estimate the absolute maximum value of
Q3: You are given the graph of
Q5: Consider the function <span class="ql-formula"
Q6: For what values of <span
Q7: <span class="ql-formula" data-value="\text { Sketch the graph
Q8: Find the local and absolute extreme
Q9: Find <span class="ql-formula" data-value="f"><span class="katex"><span
Q10: Find a cubic function <span
Q11: The quantity demanded per month of